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Théorie de la chromatographie

Introduction

= Des modeles chromatographiques ont ¢té proposes pour faire coincider la forme d’un pic
chromatographique avec les parametres thermodynamiques et cin€tiques attenant a un
systeme chromatographique: soluté / phase stationnaire / phase mobile.

= Ces modeles permettent de prevoir la distribution d’un soluté entre la phase stationnaire
et la phase mobile et d’expliquer la forme du pic chromatographique de ce dernier.

= Ces modeles montrent que si le systeéme est 1d€al, le pic chromatographique d’un soluté
est purement gaussien. Dans le cas ou le soluté chromatographié est fortement retenu par la
phase stationnaire, le pic chromatographique de ce dernier obé€it a une distribution de
poisson.

= Nous aborderont le principe de la séparation chromatographique des solutés a travers le
modele de Craig qui consiste en une approche discréte qui respecte 1’établissement d’un
¢quilibre de partage des solut€s entre les phases stationnaire et mobile.

= Nous nous inteéresserons a 1’aspect thermodynamique de la séparation a travers la
constante de distribution de partage des solutés entre les phases stationnaires et mobiles.
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= Nous discuterons de I’aspect cinétique de la séparation des solutés a travers les €équations
de Van Deemter et de Knox.



Principe de séparation :
modele de Craig
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Elaboration du modele de Craig

= Le mode¢le de Craig est a la base un modele utilisé pour décrire une cascade d’extractions
liquide-liquide.

= On peut utiliser ce modele comme une premiere approche de la chromatographie ou 1’on
considere une unit¢ de séparation comme un succession de sous-unités physiques de
séparation k ou se produit le partage d’un soluté J entre la phase stationnaire (fraction ¢;) et
la phase mobile (fraction p,) non miscibles. La phase mobile pure est apportée en début de
cascade de facon discontinue.
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= Le tableau ci-dessous représente ce qu’il se passe dans chaque sous-unit¢ k (cuve =
plateau théorique) apres n €tapes chromatographiques (transfert = apport de phase mobile)
pour la chromatographie d’élution. Le soluté J de masse €gale a 1 est apporté par la phase
mobile qui s’écoule a travers la phase stationnaire en continu.

Opération | Etape | Phases | Cuve k=10 | Cuve k=1 | Cuve k=2 | Cuve k=3 | Somme

n=10 Injection

Transfert P, +q)!

Transfert v, +4q)°

Transfert ;+q)
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= Le tableau ci-dessous représente le méme modele pour la chromatographie planaire. Le
solut¢ J de masse égale a 1 est dépose sur la phase stationnaire. En chromatographie
planaire classique, la phase mobile monte a travers la phase stationnaire par capillarite. Ce
modcle est alors représentatif (¢lution non forcée).

Opération | Etape | Phases | Cuve k=10 | Cuve k=1 | Cuve k=2 | Cuve k=3 | Somme

Transfert

Transfert r,+q)!

Transfert s+4q)’

Transfert w,+q)
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= Ainsi pour n transferts, la quantité totale dans ’ensemble des cuves (g,+p )" est:

<o

n (R . (n e n e n . n)
R D e e A

% Pour n transferts, la distance maximale parcourue dans 1’unité de séparation par le soluté
J est k = n. Chaque coefficient correspond a la quantité de soluté contenue dans les cuves k
=0, k = 1, k = 2...(coefficients binomiaux). Il s’agit d’une distribution binomiale en
fonction de n et k. La quantité de soluté J dans la cuve k apres n transferts sera:

2 (k) n! (k) _
[k]pjkq’ _k!(n—k)!kaqJ = P (k)

= On introduit une quantité m, dans le systeme chromatographique. Comme le soluté J est
déposé dans la cuve k =0 on aura m, (n, k) = m, (0,0). Ainsi, apres n transferts, la quantité
de soluté J dans la cuve k sera:

n . ! n—
m, (n,k)=m, (0,0)(k] 2,54, = m, (0,0) Py (:_ oY 206D e (0,0) p, (k)
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= Apres n transferts, on aura dans I’ensemble de I’unité de séparation:

" (n . n ! . n
m, (n)=m,(0,0)3 e, =m, (0,0)> / n— ,p,qu( ) =m,(0,0)2pm (k)
im0\ Kk im0 k! (” k)- k=0

m, (n)=m, (o,o)g Py (k) =m, (0,0)

= La fonction de distribution binomiale obtenue apreés 20 transferts pour diverses
répartitions d’un soluté J entre la phase stationnaire et la phase mobile est:

0.25 0.25 0.25

m ,(0,0)=1 m ,(0,0)=1 m;(0,0)=1
n=20 n=20 n=20
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0.20 - 0.20 - 0.20 —
o 015 o 0157 > 0154
S < S
S 0104 S 0104 g 0104
0.05 — ‘ ‘ 0.05 - ‘ ‘ 0.05 — ‘ ‘
0.00| |l : : | 0.00 !‘ ‘! : 0.00 : }| |i
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Caractéristigues des fonctions de distribution p(k)

= Moment ordinaire d’ordre r, m,

% Si X est discréte: p(k) = PX =k) =|m, =Y k" p(k)
k=0

= Moment centré d’ordre v, i,

% Si X est discréte: p(k) = P(X=k) = |4, = Z(k —E(X))r p(k) avec E(X) I’espérance

= Moments remarquables

S om,=1

% Espérance: E(X) = m;,

Y Variance: V(X) = 6,5, = 4, = m~(m)?
Y Ecart-type: 6.y, = (1)"?
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Convergence d’une loi binomiale vers une loi de poisson

= Loi de Poisson

“ La loi binomiale converge vers une loi de poisson pour n > 30, np <15 et p < 0,1 avec 4,
=np;=k :

k!

Py (k)= []pJ ¢, > p, (k)_'?'k —%=Me-(%)

& La distribution binomiale devient:

m

d (k’%) — iy (0’0) P (k) =m, (0,0)@3_(%)

% Une distribution de Poisson est représentative d’une situation pour un soluté fortement
retenu (q, — 1).

11
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= Signal chromatographique obéissant a une loi de Poisson

© Distribution de poisson dans chaque cellule k avec 4; = k_]:

k
m, (k,/?u,]) =m, (0, 0)—(/1:’) e_(’l’)

m,(20,1)

0.20 0.20 0.20 —
m (0,0)=1 m(0,0)=1 m(0,0)=1
A=5 A~10 AFIS
0.15 - 0.15 - 0.15 -
< <
0.10 - § 0.10 - § 0.10 -
g g
0.05 — 0.05 - ‘ 0.05 —
0.00 !l"'| | o.oor-'|I |‘||"i 0.00 i'||‘| i
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

k k k
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% En chromatographie d’élution, au bout d’un temps ¢, la distribution en masse du soluté J,
dont le temps de rétention brut est tg(y), sera:

mJ(k,%)=m ( ) J(O 0)( ) )

% En chromatographie planaire, lorsque 1’éluant a parcouru une certaine distance L, la
distribution en masse du solute J, dont la distance de migration moyenne est dj), sera:

mJ(k’%) (L o€ ) m, (0, 0)(d ) e_(d(’))

L!
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Convergence d’une loi binomiale vers une loi normale

= Loi Normale

% La loi binomiale converge vers une loi normale pour n > 30 et np > 5:

& La distribution binomiale devient:

1 k=K ’
_ ) _[61 ]
(o (0) =, 00) 1 (0=, (00) L
o)

J)(k)\/g

% Une distribution normale est représentative d’une situation pour un soluté faiblement
retenu (¢, — 0).

14



m(20,k,,0,(k))

= Signal chromatographique obéissant a une loi normale

% Distribution normale dans chaque cellule &:

Théorie de la chromatographie

m, (kK0 (K)) = m, (0,0)

1

o

G(J) (k)\/ﬂ ’

k—k(s)
(5 (k)

]2

0.30
L ;(0,0)=1
k=5

0.25 - oy(k)=2

0.20 3

8

0.15 ls

S
X

0.10 - &

0.05 ‘ ‘

0.00 | | — I I

10 15 20 25

0.30
my(0,0)=1
k=10

0.25 oy (k)=2.83

0.20 -} 2

S

0.15 - <

S
Q
0.10 1 g
0.05 -
i ||‘ ‘||
0.00 HE S
5 10 15 20 25

k

0.30
m(0,0)=1
k15

0.25 — o,(k)=3.46

0.20 1

0.15 4

0.10 4

- ‘ ‘ ‘ ‘

1 ‘ ‘
0.00 : | |
5 10 15 20 25

k

15



Théorie de la chromatographie

% En chromatographie d’élution, au bout d’un temps ¢, la distribution en masse du soluté J,
dont le temps de rétention brut est tg(y), sera:

1 t_tR(J) ’

_ L A
mJ(k’k(J)’O-(J)(k))=mJ(t’tR(J)’O-(J)(t))=mJ(0’0)O_( )(t)\/ge .
J

% En chromatographie planaire, lorsque 1’éluant a parcouru une certaine distance L, la
distribution en masse du solute J, dont la distance de migration moyenne est dj), sera:

1 L4y 2
— 1 ‘z[a, (L)J
(s 010) () = m, (o007 (£)) = m, (0,0) o) (L2 ’

16
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Caractéristiques chromatographiques

= Hauteur équivalente a un plateau théorique

% Au cours de la progression du soluté J dans 1’unité de séparation, 1’élargissement de la
bande chromatographique de ce dernier est reperée par sa variance. Ainsi, apres un distance
parcourue x dans I’unité de séparation, on a: o*zw(x) =H g x

& H représente la hauteur équivalente a un plateau théorique.

Y Lorsque le soluté J parcours la distance moyenne d’avancement k() dans 'unité de
séparation, la hauteur équivalente a un plateau théorique H vaut:

_ o’ (k)
o'y (K)=Hikyy = Hy=—=

17
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= Nombre de plateaux théoriques

O Aprés un distance parcourue x dans 1’unité de séparation, le nombre de plateaux
théoriques vus par le soluté J estrelie a H ;): Hj =x/ Ny,

% Lorsque le soluté J parcours la distance moyenne d’avancement ky dans lunit¢ de
séparation, le nombre de plateaux theéoriques V) vaut:
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Loi

Binomial Poisson Gauss
Parameétres n, k) P q k; 2' ks g
Correspondance B(n,p) - A=np O =./npq
n ! i (n— k) Ak 1 _l[%:r
p(k) Pq Z et e o)
k!(n—k)! k! o(k)N2x
Espérance k= np k=2 k
Variance V =npq V=24 V =¢o’
Ecart-type O =/npq o= o
2
A k
n 2Y kY
I-p Ja o
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Aspect thermodynamique de |a
seéparation
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Introduction

= La thermodynamique chromatographique conditionne la distribution d’un soluté J donn¢
entre la phase stationnaire et la phase mobile. Cette distribution engendre un temps de
séjour specifique qui se transcrit en un temps de rétention ou un rapport frontal définit.

= En chromatographie d’¢lution, plus le temps de séjour d’un soluté en phase stationnaire
est grand, plus son temps de rétention est grand.

= En chromatographie planaire, plus le temps de résidence d’un solut¢ en phase
stationnaire est grand, plus sont rapport frontal est petit.

= En chromatographie d’€¢lution on aura la relation suivante:

21
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Processus de séparation

= Lors de la séparation chromatographique, la molécule J interagit avec la phase
stationnaire et la phase mobile (schéma de gauche).

= L’interaction entre la phase mobile et la phase stationnaire est trés souvent le moteur de
la séparation. Les phases mobiles et stationnaires ne sont ni miscibles entre elles ni solubles

I’une dans 1’autre.

= Dans une premiere approche, I’interaction de la molécule J avec la phase mobile et la
phase stationnaire peut étre représentée comme le partage de cette dernicre entre la phase
stationnaire et la phase mobile (schéma de droite).

J Phase mobile |::> T (b)) |::>

7\

Phase _ Phase
mobile - stationnaire

Phase stationnaire

Processus de séparation a trois corps Processus de séparation par partage
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= Pour qualifier un processus de seéparation et son influence sur les temps de rétention ou
les rapports frontaux, on considéra le processus de séparation a trois corps et sa

simplification par partage.

Phase
mobile

7\

-

Phase
stationnaire

= Pour un soluté J, Le processus de séparation par partage sera qualifier a travers de la

constante de distribution K, .

-

M

=exp| —

AD

GO

(J

RT

)

=exp| —
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= La valeur de la constante de distribution K}, ;, dépend du signe et de la valeur de 4,GY ,;:

170

e 150
: 130
110

Koy

= Comme RT est positif, si 4,G’ ;, < 0 alors K, > 1 donc [J]g> [J],,
= Quel que soit RT, si 4,G? ;) = 0 alors K}, ;) = 1 donc [J]g = [J],,
= Comme RT est positif, si 4,G? ;) > 0 alors 0 < K}, ;, < 1 donc [J]s < [J],,

= Lorsque K, ;) — 0 alors [J[g — 0, c’est-a-dire que #,; — &), 0u Rpy — 1

24
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Influence de la nature chimique de la phase mobile

= Considérons a présent la situation d’équilibre qui régit 1’interaction d’un soluté J avec la
phase stationnaire et la phase mobile, situation 1:

/7 \

-

(Koo )m ) [[[-}I ]]; ](1)

= En changeant la nature chimique de la phase mobile, on augmente son affinité avec la
phase stationnaire. Cette perturbation engendre la situation 2:

J
/N
Phase _ Phase

mobile stationnaire

Phase
stationnaire

Phase
mobile

(KW) )(z> ) [%}(2)

(£, )(2) <(K4) )(1) = (1), <(l“1), = (a0 )(2) <(tar )(l) ou (R, )(2) > (Reir )(l)

25




= Considérons a présent la situation d’équilibre qui régit I’interaction d’un soluté J avec la
phase stationnaire et la phase mobile, situation 1:

Phase
mobile

7\

-

Phase
stationnaire

= En changeant la nature chimique de la phase mobile, on diminue son affinité avec la

Théorie de la chromatographie

(k) -

V1

71,

](l)

phase stationnaire. Cette perturbation engendre la situation 3:

Phase
mobile

SN

Phase
stationnaire

(s0)," |

7],

[ 7],

](3)

(KD(J) )(3) >(KD(J) )(1) = ([J]s )(3) > ([J]s )(1) = (tR(J) )(3) = (tR(J) )(1) L (RF(J) )(3) = (RF(J) )(1)

26
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Influence de la température

= En chromatographie, on utilise une augmentation de la température de ['unit¢ de
séparation pour mieux séparer et/ou gagner du temps.

= Pour un soluté¢ J, la température a laquelle la séparation est réalisée influence la valeur et
parfois le signe de 4,G? )):

4,G, = A,H ) ~TA,S/),

= La spontanéité¢ de la distribution décrit I’affinité du soluté J pour la phase stationnaire.

= Pour une distribution exothermique: 4,H’ ;) <0

O AR H ;) <0et 4S80, <0, la spontanéité | si T 1, K | et tgy) | ou Rp ) 1
O AH , <0etA,S?, =0,laspontanéité et K,, ,,, tp,;, OU R, ,, sont indépendants de T
@) @) p o> ey F() p

O AR H ) <0et 4S80, >0, 1a spontanéité 1 si T 1, Kp ) 1 et t;) T ou Ry |

27
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= Pour une distribution athermique 4,H’ ; = 0
O A H? ;=0 et 4,8’ , <0, pas de spontanéité: si T 1, Ky ;) — 0 et t, ;) — ty,0u Ry — 1
O AH? ;) =0et A8’ =0, alors K;, ;) =1

b, ApH’ ;) = 0 et ApS ;> 0, la spontanéité 1 si T 1, Ky 1 ettg T ouRey) |

= Pour une distribution endothermique 4,H’ ;, > 0:
O A H? ;> 0 et A8, < 0, pas de spontanéité: si T 1, Ky ;) — 0 et ty ;) — ty,0u Ry — 1

O ApH? ;> 0 et A,8? ;= 0, pas de spontanéité: Kj, ) et tp ;) ou Ry, sont indépendants de
T

N ADH"(J) > () et ADS0(J) >0, la spontancité T si T 1, Kp 1 ettpy) T ou Rggy |

28
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Quantification de l'influence de la température

= On quantifie I’influence de la température sur une séparation a travers la variation de &’
car k’ est une grandeur réduite. Pour un soluté J, La température a laquelle la séparation est
réalisée influence la valeur et parfois le signe de 4,G? ;.

A,,G(‘{,)
k’(J) = KD(J)¢SM= e ¢SM
AH , AS/
ro— () , 7P () y _ 4
lnk(J)— — + = +n®,, = lnk(J)—T+b

= On étudie la variation de lnk’(J) en fonction de T-Z;

Y Sia <0, alors 4,H’ ;) > 0: la distribution est endothermique, &k’ et t5,, T ou Ry |
lorsque T 1

-tb Si a =0, alors A H’; = 0: la distribution est athermique, k’, et tz, ou Ry, sont
indépendants de T

29
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Y Sia >0, alors 4,H’, < 0: la distribution est exothermique, &k’ et t5,;, | ou Rg,, 1
lorsque T 1

& Le signe de ’ordonnée a ’origine b dépend du signe de (4 285°y)/R) +Indg,,

30



Aspect cinétiqgue de la séparation
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Introduction

= D’efficacit¢ chromatographique est mesurée par la hauteur équivalente a un plateau
théorique (HEPT), notée H.

Hauteur Equivalente a un Plateau Théorique HEPT

= A mesure qu’un soluté¢ J migre dans 1’unité de séparation, il occupe une zone qui
s’¢élargit. Cette dispersion linéaire oy, (k), repérée par la variance o,*(k) qui croit avec la
distance parcourue par le soluté J.

32
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= Lorsque la distance parcourue par le soluté J est L, longueur de I’unité de séparation, la
variance oy,?(L) vaut:

_ O-(J)z (L)
L

O'(J)Z(L)=H(J)L = H,

= La HEPT est aussi reli¢e aux nombre de plateaux théoriques NV, de Iunité de s¢paration.
Pour un soluté J, on aura :

2
L I’ L
H .=— = N, k6 = —
) N(J) V) O-(J)Z(L) [O'(J)(L)]

= Si H diminue, la largeur du signal chromatographique diminue, attestant que I’efficacité
de la séparation augmente.

33
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Additivité des variances

= La variance totale, observée sur le signal chromatographique correspond a la somme des
variances internes et externes a 1’unité de séparation.

= La variance interne correspond a la somme des variances associc¢es a la diffusion du
soluté J, a la cinétique de partage de ce dernier entre les phases stationnaire et mobile ainsi
qu’au transfert de masse du soluté J de la phase mobile vers la phase stationnaire.

= La variance externe correspond a la somme des variances associ¢es aux différents
¢léments qui composent la chaine chromatographique : I’'injecteur, le détecteur ainsi que les
différents connecteurs qui relient tous ces €léments entre-eux.

O'(ZJ) (k) =0'(2]) (inteme(k))+0'(ZJ) (exteme(k))
O'(ZJ) (inteme (k)) = O'(ZJ) (diffusion (k)) +0'(2J) (cinétique (k)) +0'(2])(transfert de masse (k))

0'(2 7) (exteme (k)) = 0'(2 7) (injecteur (k)) -+ 0'(2 7) (détecteur (k)) + 0'(2 7) (connecteurs (k))
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Retard cinétique: cmz(interne (k))

= Lorsque I’¢quilibre de répartition d’un soluté J entre les phases mobile et stationnaire ne
s’établit pas spontanément, on observe un phénomene de retard cinétique. Localement, sur
le plateau théorique k,, la conservation de la matiere n’est plus respectee:

mS(J)(kI) +mM(J)(k1) ¢mS(J)(k0) +mM(J)(k0)

Retard [\
> y.
r

=~V
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Equation de Van Deemter

= Etablissement de ’équation de Van Deemter

% La HEPT H est reliée a la vitesse linéaire d’écoulement moyenne de la phase mobile u
(cm-s!) par I’équation de Van Deemter:

Z(k)
) = —— = A+— +C_ H, +H,+H,
u

H/cm

% Le nombre de plateaux théoriques est
maximum (séparation optimum) lorsque H
est minimum (dH/du = 0).
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= Le terme A de I’équation de Van Deemter
% Le terme A4 représente la diffusion de Eddy.

% 11 est en relation avec le profil d’écoulement de la phase mobile a travers la phase
stationnaire. Il s’agit d’une anisotropie d’écoulement.

% La morphologie (taille) ainsi que la régularité du remplissage (répartition
dimensionnelle) des particules qui composent la phase stationnaire induit des chemins
préférentiels au sein de 1’unité de s€paration. Il en découle des phénomenes de retard qui
contribuent a I’¢largissement du signal chromatographique.

A=f(d,) d,: diametre des particules (um)
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= Le terme B de I’équation de Van Deemter

% Le terme B représente la diffusion longitudinale. 11 dépend du coefficient de diffusion du
soluté J en phase mobile D,

G D,,;) mesure la mobilit¢ de J dans la phase mobile. Il est plus faible en phase liquide
qu’en phase gazeuse.

L Si I’écoulement de la phase mobile est trop faible, alors les solutés séparés se mélangent
a nouveau par diffusion longitudinale (phénomene rapide).

B- f(DM(J))

Dy, : coefficient de diffusion du solut¢ J en phase
—— mobile (um?-s!)

38



Théorie de la chromatographie

= Le terme C de I’équation de Van Deemter

& Le terme C représente la résistance au transfert de masse d’un soluté J entre les deux
phases.

L Ce terme devient prépondérant lorsque 1’écoulement de la phase mobile est trop rapide
pour que 1’équilibre de répartition du soluté entre les deux phases soit atteint. Le soluté sera
entrain¢ hors équilibre.

Dy, : coefficient de diffusion du solut¢ J en phase
mobile (um?-s!)

Dy, : coefficient de diffusion du solut¢ J en phase
stationnaire (um?-s-!)
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= Débit de phase mobile optimum

Y Pour obtenir I’expression de la vitesse linéaire d’écoulement moyenne optimum de phase

mobile #u,,, il suffit de dériver H en fonction du débit u et trouver le minimum de la

fonction.

H,=A+2JBC

10 20 30 40

u/cm-s’!
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= Importance des différents termes de I’équation de Van Deemter

% Le terme A est trés important lorsque 1’on travaille avec une phase stationnaire granulaire
qui remplit totalement le volume de 1’unité de séparation.

% Le terme A limite le nombre de plateaux théoriques maximal atteignables. 11 dépend
principalement de la qualité de garnissage de 1’unité de séparation.

% Le terme B est trés important lorsque les solutés analysés sont en phase gazeuse car la
diffusion devient tres rapide par rapport a celle en phase liquide.

% Le terme B augmente avec la température et diminue lorsque la viscosité de la phase
mobile augmente.

% Le terme C, la résistance au transfert de masse, est minimalisé pour une faible épaisseur
de phase stationnaire, un petit diametre de colonne, une température élevée, un coefficient
D, €levé (phase mobile peu visqueuse) et un faible ¢coulement de phase mobile.
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ie

= Quelques exemples d’équations de Van Deemter

% Chromatographie a avancement limité (équation de Guiochon):

)~

2 },MDM(J) + ) X 7SDS(J)
Rp) 3
L+z,)+—
ydp ( 0) 2

5/ 1 2 2
A%/wé Lé_%é Cﬁh3 .
* 2 o0 (L o
) 3 ~ %y M(J)( _zo)

(ZDMU)

L

9

J

% Chromatographie en phase gazeuse, colonne capillaire (équation de Golay):

H, =

ZDMU

(1+6k}”

+11k2”2)

u

(1+k'(J))2

% Chromatographie en phase liquide :

HO
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U Liste de termes des équations de Van Deemter:

C : terme de transfert de masse (0,01 a 0,1)

q : facteur dépendant de la morphologie de la phase stationnaire liquide

y : coefficient li¢ aux propriétés physiques de 1’éluant

A : parametre de remplissage

v : facteur de tortuosité

D, : coefficient de diffusion d’un soluté J en phase mobile (um?*-s)
Dy, : coefficient de diffusion d’un soluté J en phase stationnaire (um?*-s)

k’( K facteur de rétention du soluté J

Ry, : rapport frontal du solut¢ J

7, - distance entre le spot du soluté J et le front de solvant (cm)

L : distance de migration du front de solvant (cm)

u : vitesse linéaire d’écoulement moyenne de la phase mobile (cm-s™)
d;: ¢epaisseur du film constituant la phase stationnaire (um)

d, : diametre des particules (um)

43



Théorie de la chromatographie

Equation de Knox

= Etablissement de ’équation de Knox

% En chromatographie en phase liquide, il est commun d’avoir recours a 1’équation de
Knox. Pour établir cette derniere on utilise les grandeurs réduites qui s’expriment en
fonction du diametre d, des particules constituant la phase stationnaire.

% La longueur réduite I représente le nombre de tranches de particules contenues dans la
colonne.

% La longueur réduite dépend de la longueur L de la colonne :

% Deux colonnes ayant la méme longueur réduite auront une efficacité équivalente si elle
sont mises en ceuvres avec la méme vitesse d’écoulement réduite de phase mobile.
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Y La hauteur équivalente a un plateau théorique réduite h s’exprime en fonction de la
HEPT comme :

S

% h représente le nombre de couches de particules par plateau théorique. Cette grandeur
permet de comparer entre-elles des colonnes remplies de particules de tailles différentes.

% La vitesse d’écoulement réduite moyenne v de la phase mobile s’exprime en fonction de
la vitesse lin€aire d’€coulement moyenne de la phase mobile u, du coefficient de diffusion
du solute J dans la phase mobile D, ;, et du temps mort ¢,

— 2
ud Ld, Id,

p

y =

Dyiy tuDPuyy Py
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Y L’équation de Knox permet de relierh a v :

10 —

h=AV1/3+§+C17
| %

S|

= Le terme A de I’équation de Knox

% A représente I’anisotropie d’écoulement. 4 dépend fortement de la régularité du
remplissage et de uniformité de la répartition granulométrique de la phase stationnaire.
Pour une colonne bien remplie avec des particules homogenes, A4 est généralement compris
entre 0,5 et 1.
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Y Des valeurs supérieures a 3 sont I’indice d’une colonne peu homogéne en terme de
remplissage et/ou distribution granulométrique des particules de la phase stationnaire.

= Le terme B de I’équation de Knox

Y Comme dans I’équation de Van Deemter, B représente le terme de diffusion
longitudinale. En général B est souvent prise égale a 2.

= Le terme C de I’équation de Knox

Y Comme dans I’équation de Van Deemeter, C représente la résistance au transfert de
masse.

L C est souvent comprise entre 0,01 et 0,2.

Y C peut prendre des valeurs plus élevées lorsque les phases stationnaires sont
polymériques, lorsque les solutés sont volumineux (protéines) ou lorsque la dimension des
pores des particules de la phase stationnaire n’est pas nettement supérieure a la taille des
solutés.

% C peut atteindre 1 en chromatographie ionique.
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Transformation de I’'avancement chromatographique

= Le signal chromatographique en distance est transformé en signal en temps par le
detecteur : oy (k) — oy,)(10).

= Il s’agit d’une transformation qui n’induit aucune perturbation supplémentaire.

% Le schéma ci-dessous correspond a la chromatographie d’élution:

détecteur

signal

chromatogramme

0'(.1) (t)

tR(J) temps t
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