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Introduction

 Des modèles chromatographiques ont été proposés pour faire coïncider la forme d’un pic
chromatographique avec les paramètres thermodynamiques et cinétiques attenant à un
système chromatographique: soluté / phase stationnaire / phase mobile.

 Ces modèles permettent de prévoir la distribution d’un soluté entre la phase stationnaire
et la phase mobile et d’expliquer la forme du pic chromatographique de ce dernier.

 Ces modèles montrent que si le système est idéal, le pic chromatographique d’un soluté
est purement gaussien. Dans le cas où le soluté chromatographié est fortement retenu par la
phase stationnaire, le pic chromatographique de ce dernier obéit à une distribution de
poisson.

 Nous aborderont le principe de la séparation chromatographique des solutés à travers le
modèle de Craig qui consiste en une approche discrète qui respecte l’établissement d’un
équilibre de partage des solutés entre les phases stationnaire et mobile.

 Nous nous intéresserons à l’aspect thermodynamique de la séparation à travers la
constante de distribution de partage des solutés entre les phases stationnaires et mobiles.
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 Nous discuterons de l’aspect cinétique de la séparation des solutés à travers les équations
de Van Deemter et de Knox.
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Principe de séparation :
modèle de Craig
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 Le modèle de Craig est à la base un modèle utilisé pour décrire une cascade d’extractions
liquide-liquide.

 On peut utiliser ce modèle comme une première approche de la chromatographie où l’on
considère une unité de séparation comme un succession de sous-unités physiques de
séparation k où se produit le partage d’un soluté J entre la phase stationnaire (fraction qJ) et
la phase mobile (fraction pJ) non miscibles. La phase mobile pure est apportée en début de
cascade de façon discontinue.
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Elaboration du modèle de Craig
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Opération Etape Phases Cuve k = 0 Cuve k = 1 Cuve k = 2 Cuve k = 3 Somme

n = 0

Conditionnement
M 0 0 0 0

S 0 0 0 0

Injection
M 1 0 0 0

1
S 0 0 0 0

Equilibre
M pJ 0 0 0

S qJ 0 0 0

n = 1

Transfert
M 0 pJ 0 0

(pJ + qJ)1

S qJ 0 0 0

Equilibre
M pJqJ pJ2 0 0

S qJ2 pJqJ 0 0

n = 2

Transfert
M 0 pJqJ pJ2 0

(pJ + qJ)2

S qJ2 pJqJ 0 0

Equilibre
M pJqJ2 2pJ2qJ pJ3 0

S qJ3 2pJqJ2 pJ2qJ 0

n = 3

Transfert
M 0 pJqJ2 2pJ2qJ pJ3

(pJ + qJ)3

S qJ3 2pJqJ2 pJ2qJ 0

Equilibre
M pJqJ3 3pJ2qJ2 3pJ3qJ pJ4

S qJ4 3pJqJ3 3pJ2qJ2 pJ3qJ

 0 1J Jq p 

 Le tableau ci-dessous représente ce qu’il se passe dans chaque sous-unité k (cuve =
plateau théorique) après n étapes chromatographiques (transfert = apport de phase mobile)
pour la chromatographie d’élution. Le soluté J de masse égale à 1 est apporté par la phase
mobile qui s’écoule à travers la phase stationnaire en continu.
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 0 1J Jq p 

 Le tableau ci-dessous représente le même modèle pour la chromatographie planaire. Le
soluté J de masse égale à 1 est déposé sur la phase stationnaire. En chromatographie
planaire classique, la phase mobile monte à travers la phase stationnaire par capillarité. Ce
modèle est alors représentatif (élution non forcée).

Opération Etape Phases Cuve k = 0 Cuve k = 1 Cuve k = 2 Cuve k = 3 Somme

n = 0

Injection
M - - - -

S 1 0 0 0

Transfert
M 0 - - -

1
S 1 0 0 0

Equilibre
M pJ - - -

S qJ 0 0 0

n = 1

Transfert
M 0 pJ - -

(pJ + qJ)1

S qJ 0 0 0

Equilibre
M pJqJ pJ2 - -

S qJ2 pJqJ 0 0

n = 2

Transfert
M 0 pJqJ pJ2 -

(pJ + qJ)2

S qJ2 pJqJ 0 0

Equilibre
M pJqJ2 2pJ2qJ pJ3 -

S qJ3 2pJqJ2 pJ2qJ 0

n = 3

Transfert
M 0 pJqJ2 2pJ2qJ pJ3 (pJ + qJ)3

S qJ3 2pJqJ2 pJ2qJ 0

Equilibre
M pJqJ3 3pJ2qJ2 3pJ3qJ pJ4

S qJ4 3pJqJ3 3pJ2qJ2 pJ3qJ
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 Ainsi pour n transferts, la quantité totale dans l’ensemble des cuves (qJ+pJ)n est:

       1 20 2 0

0 1 2
n n n n kn k n

J J J J J J J J J J J J

n n n n n
q p p q p q p q ... p q ... p q

k n
           

                
         

 Pour n transferts, la distance maximale parcourue dans l’unité de séparation par le soluté
J est k = n. Chaque coefficient correspond à la quantité de soluté contenue dans les cuves k
= 0, k = 1, k = 2…(coefficients binomiaux). Il s’agit d’une distribution binomiale en
fonction de n et k. La quantité de soluté J dans la cuve k après n transferts sera:

 

 
 

   n k n kk k
J J J J J

n n!p q p q p k
k k ! n k !

  
    

 On introduit une quantité mJ dans le système chromatographique. Comme le soluté J est
déposé dans la cuve k = 0 on aura mJ (n, k) = mJ (0,0). Ainsi, après n transferts, la quantité
de soluté J dans la cuve k sera:

         
       0 0 0 0 0 0n k n kk k

J J J J J J J J J

n n!m n,k m , p q m , p q m , p k
k k ! n k !

  
     
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 Après n transferts, on aura dans l’ensemble de l’unité de séparation:

         
       

0 0 0
0 0 0 0 0 0

n n n
n k n kk k

J J J J J J J J J
k k k

n n!m n m , p q m , p q m , p k
k k ! n k !

 

  

 
     

  

         
0

0 0 0 0
n

J J JJ
k

m n m , p k m ,


 

 La fonction de distribution binomiale obtenue après 20 transferts pour diverses
répartitions d’un soluté J entre la phase stationnaire et la phase mobile est:
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Caractéristiques des fonctions de distribution p(k)

Moment ordinaire d’ordre r, mr

 Si X est discrète: p(k) = P(X = k)  
0

n
r

r
k

m k p k


 

Moment centré d’ordre r, r

 Si X est discrète: p(k) = P(X = k)     
0

n r

r
k

k X p k


   avec E(X) l’espérance

Moments remarquables

 m0 = 1

 Espérance: E(X) = m1

 Variance: V(X) = σ(X)
2 = 2 = m2-(m1)2

 Ecart-type: σ(X) = (2)1/2
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 Loi de Poisson

 La loi binomiale converge vers une loi de poisson pour n > 30, np < 15 et p < 0,1 avec J
= npJ = 𝒌ሺ𝑱ሻ :

     
             JJ

k
k

kJn kk J
J JJ J

kn
p k p q p k e e

k k ! k !
   

 


 


Convergence d’une loi binomiale vers une loi de poisson

 Une distribution de Poisson est représentative d’une situation pour un soluté fortement
retenu (qJ → 1).

                0 0 0 0 J
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m k ,k m , p k m , e

k !


 

 La distribution binomiale devient:
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 Signal chromatographique obéissant à une loi de Poisson

 Distribution de poisson dans chaque cellule k avec 𝝀𝑱 ൌ 𝒌𝑱:
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 En chromatographie d’élution, au bout d’un temps t, la distribution en masse du soluté J,
dont le temps de rétention brut est 𝒕𝑹 𝑱 , sera:

             R J

t

tR J

J J JJ R J

t
m k ,k m t ,t m , e

t !
0 0


 

 En chromatographie planaire, lorsque l’éluant à parcouru une certaine distance L, la
distribution en masse du soluté J, dont la distance de migration moyenne est 𝒅 𝑱 , sera:

             J

L

dJ

J J JJ J

d
m k ,k m L,d m , e

L!
0 0


 
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 Loi Normale

 La loi binomiale converge vers une loi normale pour n > 30 et np > 5:

     
   
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   
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  
 



 Une distribution normale est représentative d’une situation pour un soluté faiblement
retenu (qJ → 0).
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 
  

 La distribution binomiale devient:

Convergence d’une loi binomiale vers une loi normale
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 Signal chromatographique obéissant à une loi normale

 Distribution normale dans chaque cellule k:
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 En chromatographie d’élution, au bout d’un temps t, la distribution en masse du soluté J,
dont le temps de rétention brut est 𝒕𝑹 𝑱 , sera:

               
   

 

   

2
1
210 0

2

 
 
 
  

R J

J

t t

t

J J JJ J R J J
J

m k ,k , k m t ,t , t m , e
t


 

 

               
   

 

   
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210 0

2

J

J

L d
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J J JJ J J J
J

m k ,k , k m L,d , L m , e
L


 

 

 
 
 
  

 En chromatographie planaire, lorsque l’éluant à parcouru une certaine distance L, la
distribution en masse du soluté J, dont la distance de migration moyenne est 𝒅 𝑱 , sera:
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Caractéristiques chromatographiques

 Hauteur équivalente à un plateau théorique

 Au cours de la progression du soluté J dans l’unité de séparation, l’élargissement de la
bande chromatographique de ce dernier est repérée par sa variance. Ainsi, après un distance
parcourue x dans l’unité de séparation, on a: 2

(J)(x) = H(J) x

 H représente la hauteur équivalente à un plateau théorique.

         
   
 

2
2        J

J J J J
J

k
k H k H

k




 Lorsque le soluté J parcours la distance moyenne d’avancement 𝒌ሺ𝑱ሻ dans l’unité de
séparation, la hauteur équivalente à un plateau théorique H vaut:

 
   

 

 J
J

J

V k
H

k
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 
 

 
 

 

   
 

 

   

2

2    
 
    
 
 

J J J
J J

JJ J

J

k k k
H N

kN k

k

 

 Nombre de plateaux théoriques

 Après un distance parcourue x dans l’unité de séparation, le nombre de plateaux
théoriques vus par le soluté J est relié à H(J): H(J) = x / N(J)

 Lorsque le soluté J parcours la distance moyenne d’avancement 𝒌ሺ𝑱ሻ dans l’unité de
séparation, le nombre de plateaux théoriques N(J) vaut:

 
  

   

2


J

J
J

k
N

V k

Théorie de la chromatographie

18



Théorie de la chromatographie

19
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Introduction

 La thermodynamique chromatographique conditionne la distribution d’un soluté J donné
entre la phase stationnaire et la phase mobile. Cette distribution engendre un temps de
séjour spécifique qui se transcrit en un temps de rétention ou un rapport frontal définit.

 En chromatographie d’élution, plus le temps de séjour d’un soluté en phase stationnaire
est grand, plus son temps de rétention est grand.

 En chromatographie planaire, plus le temps de résidence d’un soluté en phase
stationnaire est grand, plus sont rapport frontal est petit.

 En chromatographie d’élution on aura la relation suivante:

 
   

   


  
MR J R J

SMJ D J
M M

t' t t
k' K

t t


 En chromatographie planaire on aura la relation suivante:

 
 

 
 

1
 


 F J

SMJ D J
F J

R
k' K

R

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Processus de séparation

 Lors de la séparation chromatographique, la molécule J interagit avec la phase
stationnaire et la phase mobile (schéma de gauche).

 L’interaction entre la phase mobile et la phase stationnaire est très souvent le moteur de
la séparation. Les phases mobiles et stationnaires ne sont ni miscibles entre elles ni solubles
l’une dans l’autre.

 Dans une première approche, l’interaction de la molécule J avec la phase mobile et la
phase stationnaire peut être représentée comme le partage de cette dernière entre la phase
stationnaire et la phase mobile (schéma de droite).

J

Phase
stationnaire

Phase
mobile

Phase mobile

Phase stationnaire

JM (pJ)

JS (qJ)

Processus de séparation à trois corps Processus de séparation par partage
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 Pour qualifier un processus de séparation et son influence sur les temps de rétention ou
les rapports frontaux, on considéra le processus de séparation à trois corps et sa
simplification par partage.

J

Phase
stationnaire

Phase
mobile

 
 
 

      0 00

= 
               

S J M JD Js
D J

M

GJ
K exp exp

J RT RT

 

M SJ J

 Pour un soluté J, Le processus de séparation par partage sera qualifier à travers de la
constante de distribution KD(J).
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 Comme RT est positif, si ΔDG0
(J) < 0 alors KD(J) > 1 donc [J]S > [J]M

 Quel que soit RT, si ΔDG0
(J) = 0 alors KD(J) = 1 donc [J]S = [J]M

 Comme RT est positif, si ΔDG0
(J) > 0 alors 0 < KD(J) < 1 donc [J]S < [J]M

 Lorsque KD(J) → 0 alors [J]S → 0, c’est-à-dire que tR(J) → tM ou RF(J) → 1

 La valeur de la constante de distribution KD(J) dépend du signe et de la valeur de ΔDG0
(J):
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K D
(J
)

ΔDG0
(J)/RT

0 < KD(J) < 1

KD(J) = 1

KD(J) > 1
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 Considérons à présent la situation d’équilibre qui régit l’interaction d’un soluté J avec la
phase stationnaire et la phase mobile, situation 1:

J

Phase
stationnaire

Phase
mobile

  
 

 
 

 
1

1

= 
 
  
 

s
D J

M

J
K

J

 En changeant la nature chimique de la phase mobile, on augmente son affinité avec la
phase stationnaire. Cette perturbation engendre la situation 2:

  
 

 
 

 
2

2

= 
 
  
 

s
D J

M

J
K

J

  
    

 
   

      
    

    
    

 2 12 1 2 1 2 1
<  ou     D J D J R J R J F J F Js s

K K J J t t R R

Influence de la nature chimique de la phase mobile
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 Considérons à présent la situation d’équilibre qui régit l’interaction d’un soluté J avec la
phase stationnaire et la phase mobile, situation 1:

J

Phase
stationnaire

Phase
mobile

  
 

 
 

 
1

1

= 
 
  
 

s
D J

M

J
K

J

 En changeant la nature chimique de la phase mobile, on diminue son affinité avec la
phase stationnaire. Cette perturbation engendre la situation 3:

  
 

 
 

 
3

3

= 
 
  
 

s
D J

M

J
K

J

  
    

 
   

      
    

    
    

 3 13 1 3 1 3 1
>   ou     D J D J R J R J F J F Js s

K K J J t t R R
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 En chromatographie, on utilise une augmentation de la température de l’unité de
séparation pour mieux séparer et/ou gagner du temps.

 Pour un soluté J, la température à laquelle la séparation est réalisée influence la valeur et
parfois le signe de ΔDG0

(J):

Influence de la température

     
0 0 0 D D DJ J JG H T S  

 La spontanéité de la distribution décrit l’affinité du soluté J pour la phase stationnaire.

 Pour une distribution exothermique: ΔDH0
(J) < 0

 ΔDH0
(J) < 0 et ΔDS0

(J) < 0, la spontanéité ↓ si T ↑, KD(J) ↓ et tR(J) ↓ ou RF(J) ↑

 ΔDH0
(J) < 0 et ΔDS0

(J) = 0, la spontanéité et KD(J), tR(J) ou RF(J) sont indépendants de T

 ΔDH0
(J) < 0 et ΔDS0

(J) > 0, la spontanéité ↑ si T ↑, KD(J) ↑ et tR(J) ↑ ou RF(J) ↓

Théorie de la chromatographie

27



 Pour une distribution athermique ΔDH0
(J) = 0

 ΔDH0
(J) = 0 et ΔDS0

(J) < 0, pas de spontanéité: si T ↑, KD(J) → 0 et tR(J) → tM ou RF(J) → 1

 ΔDH0
(J) = 0 et ΔDS0

(J) = 0, alors KD(J) = 1

 ΔDH0
(J) = 0 et ΔDS0

(J) > 0, la spontanéité ↑ si T ↑, KD(J) ↑ et tR(J) ↑ ou RF(J) ↓

 Pour une distribution endothermique ΔDH0
(J) > 0:

 ΔDH0
(J) > 0 et ΔDS0

(J) < 0, pas de spontanéité: si T ↑, KD(J) → 0 et tR(J) → tM ou RF(J) → 1

 ΔDH0
(J) > 0 et ΔDS0

(J) = 0, pas de spontanéité: KD(J) et tR(J) ou RF(J) sont indépendants de
T

 ΔDH0
(J) > 0 et ΔDS0

(J) > 0, la spontanéité ↑ si T ↑, KD(J) ↑ et tR(J) ↑ ou RF(J) ↓
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 On quantifie l’influence de la température sur une séparation à travers la variation de k’
car k’ est une grandeur réduite. Pour un soluté J, La température à laquelle la séparation est
réalisée influence la valeur et parfois le signe de ΔDG0

(J).

Quantification de l’influence de la température

   

  
 
 
 

0
D JG

-
RT

SM SMJ D Jk' K = e


 

 
   

       
0 0

D DJ J
SMJ J

H S aln k' ln     ln k' b
RT R T

 


 On étudie la variation de lnk’(J) en fonction de T -1:

 Si a < 0, alors ΔDH0
(J) > 0: la distribution est endothermique, k’(J) et tR(J) ↑ ou RF(J) ↓

lorsque T ↑

 Si a = 0, alors ΔDH0
(J) = 0: la distribution est athermique, k’(J) et tR(J) ou RF(J) sont

indépendants de T
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 Si a > 0, alors ΔDH0
(J) < 0: la distribution est exothermique, k’(J) et tR(J) ↓ ou RF(J) ↑

lorsque T ↑

 Le signe de l’ordonnée à l’origine b dépend du signe de (ΔDS0
(J) / R) + lnФSM
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Aspect cinétique de la séparation
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Introduction

 L’efficacité chromatographique est mesurée par la hauteur équivalente à un plateau
théorique (HEPT), notée H.

Hauteur Equivalente à un Plateau Théorique HEPT

 A mesure qu’un soluté J migre dans l’unité de séparation, il occupe une zone qui
s’élargit. Cette dispersion linéaire (J)(k), repérée par la variance (J)

2(k) qui croît avec la
distance parcourue par le soluté J.

   J k

 Jk
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 Lorsque la distance parcourue par le soluté J est L, longueur de l’unité de séparation, la
variance (J)

2(L) vaut:

       
   2

2     J
J J J

L
L H L H

L


   

 La HEPT est aussi reliée aux nombre de plateaux théoriques N(J) de l’unité de séparation.
Pour un soluté J, on aura :

 Si H diminue, la largeur du signal chromatographique diminue, attestant que l’efficacité
de la séparation augmente.

 
 

 
       

2
2

2    J J
J J J

L L LH N
N L L 

 
    
 
 
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Additivité des variances

 La variance totale, observée sur le signal chromatographique correspond à la somme des
variances internes et externes à l’unité de séparation.

 La variance interne correspond à la somme des variances associées à la diffusion du
soluté J, à la cinétique de partage de ce dernier entre les phases stationnaire et mobile ainsi
qu’au transfert de masse du soluté J de la phase mobile vers la phase stationnaire.

 La variance externe correspond à la somme des variances associées aux différents
éléments qui composent la chaîne chromatographique : l’injecteur, le détecteur ainsi que les
différents connecteurs qui relient tous ces éléments entre-eux.

             

                   

                   

2 2 2
J J J

2 2 2 2
J J J J

2 2 2 2
J J J J

k = interne k + externe k

interne k  diffusion k  cinétique k  transfert de masse k

externe k injecteur k détecteur k connecteurs k

  

   

   

  

  
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Retard cinétique: (J)
2(interne (k))

 Lorsque l’équilibre de répartition d’un soluté J entre les phases mobile et stationnaire ne
s’établit pas spontanément, on observe un phénomène de retard cinétique. Localement, sur
le plateau théorique k1, la conservation de la matière n’est plus respectée:

Retard

[J]S

[J]M

k k

k0 k1

               S 1 1 S 0 0J M J J M Jm k  m k  m k  m k  
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Equation de Van Deemter

 
   2
J

A B CJ

k BH A Cu H H H
L u


      

 Le nombre de plateaux théoriques est
maximum (séparation optimum) lorsque H
est minimum (𝒅𝑯 𝒅𝒖ഥ ൌ 𝟎⁄ ).

 Etablissement de l’équation de Van Deemter

 La HEPT H est reliée à la vitesse linéaire d’écoulement moyenne de la phase mobile 𝒖ഥ
(cmꞏs-1) par l’équation de Van Deemter:
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dp : diamètre des particules (μm)pA f ( d )

 Le terme A de l’équation de Van Deemter

 Le terme A représente la diffusion de Eddy.

 Il est en relation avec le profil d’écoulement de la phase mobile à travers la phase
stationnaire. Il s’agit d’une anisotropie d’écoulement.

 La morphologie (taille) ainsi que la régularité du remplissage (répartition
dimensionnelle) des particules qui composent la phase stationnaire induit des chemins
préférentiels au sein de l’unité de séparation. Il en découle des phénomènes de retard qui
contribuent à l’élargissement du signal chromatographique.
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  M JB f D

DM(J) : coefficient de diffusion du soluté J en phase
mobile (μm2ꞏs-1)

 Le terme B de l’équation de Van Deemter

 Le terme B représente la diffusion longitudinale. Il dépend du coefficient de diffusion du
soluté J en phase mobile DM(J).

 DM(J) mesure la mobilité de J dans la phase mobile. Il est plus faible en phase liquide
qu’en phase gazeuse.

 Si l’écoulement de la phase mobile est trop faible, alors les solutés séparés se mélangent
à nouveau par diffusion longitudinale (phénomène rapide).
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 Le terme C de l’équation de Van Deemter

 Le terme C représente la résistance au transfert de masse d’un soluté J entre les deux
phases.

 Ce terme devient prépondérant lorsque l’écoulement de la phase mobile est trop rapide
pour que l’équilibre de répartition du soluté entre les deux phases soit atteint. Le soluté sera
entraîné hors équilibre.

    M J S JC f D  et  D

 M JD

 S JD

DM(J) : coefficient de diffusion du soluté J en phase
mobile (μm2ꞏs-1)
DS(J) : coefficient de diffusion du soluté J en phase
stationnaire (μm2ꞏs-1)
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opt
dH B0   u  
du C

  

2minH A BC 

 Débit de phase mobile optimum

 Pour obtenir l’expression de la vitesse linéaire d’écoulement moyenne optimum de phase
mobile uopt, il suffit de dériver H en fonction du débit uത et trouver le minimum de la
fonction.
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 Importance des différents termes de l’équation de Van Deemter

 Le terme A est très important lorsque l’on travaille avec une phase stationnaire granulaire
qui remplit totalement le volume de l’unité de séparation.

 Le terme A limite le nombre de plateaux théoriques maximal atteignables. Il dépend
principalement de la qualité de garnissage de l’unité de séparation.

 Le terme B est très important lorsque les solutés analysés sont en phase gazeuse car la
diffusion devient très rapide par rapport à celle en phase liquide.

 Le terme B augmente avec la température et diminue lorsque la viscosité de la phase
mobile augmente.

 Le terme C, la résistance au transfert de masse, est minimalisé pour une faible épaisseur
de phase stationnaire, un petit diamètre de colonne, une température élevée, un coefficient
DM(J) élevé (phase mobile peu visqueuse) et un faible écoulement de phase mobile.
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 Chromatographie en phase gazeuse, colonne capillaire (équation de Golay):

 
      

    

 

    

2 22
J JM J J fC

2 2J
M J S J

J J

1 6k' 11k'2D k' dr 2H u u
u 24D 3 D1 k' 1 k'

 
     

 

 

 
  

 
 

 
      

F J
M SM J S J 5 1 2 2 33 3F J 3 3

p p0
0 1J

3p 0 0 0M J
M J

1 R
2 D D

R d y CydL z3 LH L z ln
yd 2 L z 2D L z z2D

 


 
  
 

              

 Quelques exemples d’équations de Van Deemter

 Chromatographie à avancement limité (équation de Guiochon):

 Chromatographie en phase liquide :

 
   

    

  
    

2 2 2
JM J J p f

p 2 2J
M J S J

J J

qk'2 D k' d d
H 2 d u

u D D96 1 k' 1 k'




 
      
  
 
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 Liste de termes des équations de Van Deemter:

C : terme de transfert de masse (0,01 à 0,1)
q : facteur dépendant de la morphologie de la phase stationnaire liquide
y : coefficient lié aux propriétés physiques de l’éluant
 : paramètre de remplissage
 : facteur de tortuosité
DM(J) : coefficient de diffusion d’un soluté J en phase mobile (μm2ꞏs-1)
DS(J) : coefficient de diffusion d’un soluté J en phase stationnaire (μm2ꞏs-1)
k’(J) : facteur de rétention du soluté J

RF(J) : rapport frontal du soluté J
z0 : distance entre le spot du soluté J et le front de solvant (cm)
L : distance de migration du front de solvant (cm)
u : vitesse linéaire d’écoulement moyenne de la phase mobile (cmꞏs-1)
df : épaisseur du film constituant la phase stationnaire (μm)
dp : diamètre des particules (μm)
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 Etablissement de l’équation de Knox

 En chromatographie en phase liquide, il est commun d’avoir recours à l’équation de
Knox. Pour établir cette dernière on utilise les grandeurs réduites qui s’expriment en
fonction du diamètre dp des particules constituant la phase stationnaire.

 La longueur réduite l représente le nombre de tranches de particules contenues dans la
colonne.

 La longueur réduite dépend de la longueur L de la colonne :

p

Ll
d



Equation de Knox

 Deux colonnes ayant la même longueur réduite auront une efficacité équivalente si elle
sont mises en œuvres avec la même vitesse d’écoulement réduite de phase mobile.
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 h représente le nombre de couches de particules par plateau théorique. Cette grandeur
permet de comparer entre-elles des colonnes remplies de particules de tailles différentes.

 La vitesse d’écoulement réduite moyenne v de la phase mobile s’exprime en fonction de
la vitesse linéaire d’écoulement moyenne de la phase mobile 𝒖ഥ, du coefficient de diffusion
du soluté J dans la phase mobile DM(J) et du temps mort tM :

     

p p p

M MM J M J M J

ud Ld ld
v

D t D t D
  

2

 La hauteur équivalente à un plateau théorique réduite h s’exprime en fonction de la
HEPT comme :

p

Hh
d


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 Le terme A de l’équation de Knox

 A représente l’anisotropie d’écoulement. A dépend fortement de la régularité du
remplissage et de l’uniformité de la répartition granulométrique de la phase stationnaire.
Pour une colonne bien remplie avec des particules homogènes, A est généralement compris
entre 0,5 et 1.

10

8

6

4

2

0

35302520151050
𝑣 ഥ

h

/ Bh Av Cv
v

  1 3

 L’équation de Knox permet de relier h à v :
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 Des valeurs supérieures à 3 sont l’indice d’une colonne peu homogène en terme de
remplissage et/ou distribution granulométrique des particules de la phase stationnaire.

 Le terme B de l’équation de Knox

 Comme dans l’équation de Van Deemter, B représente le terme de diffusion
longitudinale. En général B est souvent prise égale à 2.

 Le terme C de l’équation de Knox

 Comme dans l’équation de Van Deemeter, C représente la résistance au transfert de
masse.

 C est souvent comprise entre 0,01 et 0,2.

 C peut prendre des valeurs plus élevées lorsque les phases stationnaires sont
polymériques, lorsque les solutés sont volumineux (protéines) ou lorsque la dimension des
pores des particules de la phase stationnaire n’est pas nettement supérieure à la taille des
solutés.

 C peut atteindre 1 en chromatographie ionique.
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Transformation de l’avancement chromatographique

 Le signal chromatographique en distance est transformé en signal en temps par le
détecteur : (J)(k)  (J)(t).

 Il s’agit d’une transformation qui n’induit aucune perturbation supplémentaire.

 Le schéma ci-dessous correspond à la chromatographie d’élution:

 Jk

   J k
   J t

 R Jt
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